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Advances in technology and the underlying demand for achieving high performance has
resulted in a class of light-weight high-speed mechanical systems. Light-weight mechanical
components are prone to appreciable elastic deformations and experience vibrational
motions. Vibration suppression in rotating elastic members is of major importance in many
engineering applications. Examples are robot manipulators, propellers, turbomachines,
high-speed #exible mechanisms, and space deployable systems. Active control falls among
the most feasible techniques for vibration suppression in rotating structures, where passive
techniques may become ine!ective or impractical. The vibrational motion of the rotating
elastic member is represented by a "nite element dynamic model, which is written in terms of
a reduced set of modal co-ordinates. A realistic set of modal co-ordinates that accounts for
the dynamically induced sti!ening e!ect due to reference rotation is introduced. Pointwise
observation and control are employed in association with an optimal state-variable
feedback strategy. The control scheme developed is applied to a rotating beam, and the
dynamic responses of both the controlled and residual frequency subsystems are numerically
evaluated.

( 2001 Academic Press
1. INTRODUCTION

Semi-active controllers utilizing the technique of activated damping have been implemented
in several vibration suppression applications [1}3]. The prescribed control law, in this case,
is based on remote sensing of structural de#ections and velocities, as well as de#ections and
velocities at the attachment point. Consequently, the control action is devoted to adjusting
the existing damping mechanism.

Active controllers have been developed and implemented in sound attenuation and room
reverberation for many years [4, 5]. However, active control of vibrations is relatively less
well developed, simply because of the complex deformations of structures. Unlike activated
dampers, active controllers are capable of sensing remote velocities and de#ections, and
producing certain control commands that feed a set of force generators attached to some
selected locations. Active controllers have the advantage of operating over a wide-frequency
range, creating an equivalent electronic gain for mass, and achieving good performance at
the low-frequency range. The latest is of great importance in controlling plate vibrations.

The early investigations by Balas [6, 7] and Meirovitch et al. [8] have laid the foundation
for establishing a fully active control scheme for vibration suppression in #exible structural
systems. In their work, the state variable feedback, modal control, and optimal control
techniques were utilized within the framework of the active controller. Moreover, the issues
of controlling a reduced order model, and the consequent e!ect of the residual frequency
subsystem were also addressed in references [6}8].
0022-460X/01/190681#19 $35.00/0 ( 2001 Academic Press



682 Y. A. KHULIEF
Some experimental investigations on active suppression of vibrations in small structures
using piezoelectric actuators have been reported [9}11]. Some relatively larger scale
experiments have been conducted using electromagnetic actuators [12, 13]. Di!erent
control strategies were invoked by the reported experimental studies, which included simple
velocity feedback, simple adaptive feedforward techniques, and modal feedback control
using a set of spectral "lters. Other analytical studies of active vibration control in elastic
beams have been reported [14}16].

The previously cited mathematical models are developed for non-rotating elastic
structures, and have not utilized the powerful "nite element method. Although, the use of
"nite element was recognized at the early stage [7, 8], only very few studies can be cited in
the literature [3, 13], wherein the "nite element method is employed in conjunction with
semi-active control schemes.

Active control of rotating shafts has been addressed through active damping and
magnetic bearing techniques, see e.g., references [17, 18]. Application of active control
techniques to rotating structures, in general, are much less represented in the available
literature. Although, several investigations have addressed the problem of vibration control
of an elastic manipulator link [19}21], they based their controller design on elastodynamic
models of a non-rotating elastic beam.

In this paper, the analytical design of an active control scheme for vibration
suppression in an elastic rotating beam has been addressed. The elastic beam is modelled
by using the consistent "nite element approach, and the elastodynamic model of the
rotating beam is formulated in the state space. The control strategy is based on optimal
modal control of a set of signi"cant modes, while state estimation for the deterministic case
is also employed. The state estimator has the elastodynamic equations of a rotating beam
as its internal model. Consequently, the e!ect of beam rotation is carried over into the
solution of the optimal regulator problem. The developed computational algorithm is
applied to a rotating beam, where di!erent controller designs are considered, and the
e!ect of the rate of spin on the controller performance is numerically evaluated. In
addition, the e!ect of material damping on the residual vibrational modes has also
been addressed.

2. THE FINITE ELEMENT MODEL

2.1. KINETIC ENERGY EXPRESSIONS

The "nite element method provides the most powerful modelling technique for elastic
structures, with the potential capability of handling complex structural con"gurations.
Therefore, the "nite element method will be utilized in deriving the elastodynamic
equations.

The rotating elastic beam can be discretized into a set of "nite beam elements. Three
systems of co-ordinates are employed to describe the global position of any arbitrary point
on the beam. These are, the inertial reference frame X>Z, the rotating beam reference axes
xyz, and the ith element axes xiyizi, as shown in Figure 1. Now, the global position Mri

p
N of an

arbitrary point pi can be expressed as

Mri
p
N"[R][Ni]MeiN, (1)

where [R(h)] is the co-ordinate transformation matrix, [Ni] is a modi"ed elemental shape
function that accounts for a transformation from the element co-ordinates to the beam



Figure 1. The elastic beam co-ordinate system.
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co-ordinate system, and MeiN is the vector of element nodal co-ordinates. Here, the elastic
deformations are con"ned to the plane of rotation. Di!erentiating equation (1) with respect
to time, one obtains the global velocity vector as

MrR i
p
N"[[Hi] [R] [Ni]]G

Mh5N
MeR iNH, (2)

where [Hi]Mh5N represents the expression [RQ ][Ni]MeiN, which results from di!erentiating the
right-hand side of equation (1) with respect to time. Now, one can write the kinetic energy
expression of the ith element as

¹i"
1

2 P
Vi

oiG
Mh5 iN
MeR iNH

T

C
[Hi]T[Hi]

[Ni]T[R]T[Hi]

[Hi]T[R][Ni]

[Ni]T[Ni] DG
Mh5 iN
MeR iNH d<i. (3)

The integrals of equation (3) can be reduced to the following forms:

P
Vi

oi[Hi]T[Hi] d<i"MeiNT P
Vi

oi[Ni]T[Ni] d<iMeiN"MeiNT[Mi]MeiN, (4)

P
Vi

oi[Hi]T[R][Ni] d<i"MeiNT P
Vi

oi[Ni]T[Si][Ni] d<i"MeiNT[SI i]. (5)

Here [Si]"[Rh]T[R], [Rh]"d[R]/dh, and [SI i] is a skew symmetric matrix [3]. The
matrix [Mi] is the conventional "nite element mass matrix of the structural dynamics
formulation. The mass matrix of the rotating "nite element, as expressed in equation (3), can
be written in the form

[MM i]"C
MeiNT[Mi]MeiN

[SI i]TMeiN
MeiNT[SI i]

[Mi] D. (6)
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2.2. STRAIN ENERGY EXPRESSIONS

The local co-ordinate vector of point pi with respect to the local element axes xiyizi can be
expressed as

Mui wiNT"[NM i]MeiN, (7)

where the deformations are con"ned to the plane of rotation, and the beam is assumed to
rotate about a "xed axis in space. The matrix [NM i] contains shape function de"ned with
respect to the element co-ordinate system. Upon neglecting shear deformations, the strain
energy expression may be written as

;i"
1

2 P
li

0
GEiaiA

Lui

LxiB
2
#EiIiA

L2wi

Lxi2B
2
#EiaiA

Lui

LxiBA
Lwi

LxiB
2

Hdx, (8)

where Ei, Ii and ai are the Young's modulus, the cross-sectional moment of inertia
and the cross-sectional area of element i respectively. The "rst two integrals of equa-
tion (8) represent linear strain energy, while the third term is a contribution of the non-
linear component of strain [22]. Equation (8) can be written in quadratic matrix
form as

;i"G
Mh5N
MeR iNH

T

C
[0]

[0]

[0]

[Ki
e
]DG

Mh5N
MeR iNH , (9)

where [Ki
e
] is given by

[Ki
e
]"[Ki

l
]#[Ki

r
]. (10)

The matrix [Ki
l
] represents the linear elastic sti!ness of element i, and the matrix [Ki

r
] is

the result of integrating the third term of equation (8), where the term Eiai(Lui/Lxi) accounts
for the axial stresses resulting from the centrifugal force "eld due to spinning. The details of
the non-zero entries of the matrix [Ki

r
] are given in reference [23].

2.3. THE ELASTODYNAMIC MODEL OF THE BEAM

The Lagrangian form of the equations of motion is obtained by performing the proper
di!erentiations of the Lagrangian function energy expressions. The equations of motion of
the #exible rotating beam can be obtained by employing the standard "nite element
sequential assembly procedure according to node numbering on the beam, and can be
written in matrix form as

C
MeNT[MMeN

[SI ]TMeN
MeNT[SI ]

[M] DG
MhKN
MeK NH#C

[0]

[0]

[0]

[K
e
]DG

MhN
MeNH

"G
!2h5 MeNT[M]MeN

h5 [M]MeN
!MeNT[SI ]MeN
!2h5 [SI ]TMeR N H#G

MQhN
MQ

e
NH, (11)

where [M], [K
e
] and [SI ] are the assembled forms of the elemental matrices [Mi], [Ki

e
] and

[SI i] respectively. The displacement vector MeN represents all the nodal co-ordinates of the
beam, while MQhN and MQ

e
N are the generalized external forces. If the beam is rotating at
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a constant angular velocity, then the vibrational motion associated with the dynamic model
of equation (11) can be expressed as

[M]MeK N#2h5 [SI ]TMeR N#([K
e
]!h52[M])MeN"MQ

e
N, (12)

where MQ
e
N is the vector of external nodal forces that may include the control forces. If

material damping is included, then equation (12) can be written as

[M]MeK N#[D]MeR N#[K]MeN"MQ
e
N, (13)

where [D]"2h5 [SI ]T#[D
e
], [K]"([K

e
]!h52[M]) and [D

e
] is the material damping

matrix. With regard to material damping, linear and non-linear models that include both
viscous and hysteretic forms of internal damping have been reported in the literature [23].
Nevertheless, linear damping models, e.g., viscoelastic Kelvin}Voigt models, have also been
adopted [24]. Accurate modelling of material damping remains an issue of continued
investigations [25]. For simplicity, the concept of proportional damping is adopted to
utilize the practical approach of introducing modal damping. In this case, the damping
matrix [D

e
] is assumed to be proportional to the mass matrix. However, any other material

damping model can be treated similarly.

2.4. THE REDUCED MODAL FORM

The discretization of elastic systems when using the "nite element method often results in
a large number of nodal co-ordinates. The resulting dynamic model with a potentially very
large number of degrees of freedom is, in essence, a mathematical model with a widely
spread eigenspectrum. Such numerical systems are prone to numerical integration
di$culties, and therefore tend to inhibit the e$ciency of the "nite element method in
modelling large-scale structural systems. To alleviate this problem, modal reductions have
been introduced [27}30]. The reduced order modal form of the equations of motion is
obtained by invoking a modal transformation from the nodal space to the space of modal
co-ordinates.

For the general case when the gyroscopic e!ect is included, one can write the eigenvalue
problem in the form

[A
e
]MyR

e
N#[B

e
]My

e
N"MQN, (14)

where MQN"[M0NT MQ
e
NT]T is the generalized force vector and My

e
N"[MeR NT MeNT]T is the

nodal state vector. Now, the eigenvalue problem is solved for the two adjoint equations

[A
e
]MyR

e
N#[B

e
]My

e
N"M0N, [A

e
]TMyR @

e
N#[B

e
]TMy@

e
N"M0N. (15, 16)

Let [U
R
] and [U

L
] denote the complex modal matrices of the di!erential operators of

equations (15) and (16) respeively: i.e.,

(j
k
[A

e
]#[B

e
])MUk

R
N"0, (j

k
[A

e
]T#[B

e
]T)MUk

L
N]"M0N, (17, 18)

in which j
k

denotes the kth eigenvalue associated with right- and left-hand eigenvectors
MUk

R
N and MUk

L
N respectively. It is noteworthy to mention that if the matrices [A

e
] and [B

e
]

are symmetric, the eigenvectors MUik
R
N and MUik

L
N are equal; otherwise MUk

R
N and MUk

L
N are

distinct.
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Having obtained the eigenvalue problem in the state-space form, one can proceed with
the important step of reducing the size of the "nite element model by utilizing modal
co-ordinates. Accordingly, the following modal transformation is introduced:

My
e
N"[U

R
]MuN. (19)

HereMuN"[MuR
e
NT Mu

e
NT]T is the state vector in the modal space, which is composed of

modal velocities and modal co-ordinates. Equation (14) can be written in an alternative
state-space form as

MyR
e
N"[AM ]My

e
N#[BM ]MQN, (20)

where

[AM ]"![A
e
]~1[B

e
]"C

[0]

[M]

![M]

[D]D
~1

C
[M]

[0]

[0]

[K]D
"C

![M]~1[D]T

[I]

![M]~1[K]

[0] D, (21)

[BM ]"[A
e
]~1"C

[0]

[M]

![M]

[D]D
~1

"C
[M]~1[D]T[M]~1

![M]~1

[M]~1

[0] D. (22)

Now, equation (20) can be written in the transformed modal form as

[U
R
]MuR N"[AM ][U

R
]MuN#[BM ]MQN. (23)

Post-multiplying both sides by [ U
L
]T, one obtains

[U
L
]T[U

R
]MuR N"[U

L
]T[AM ][U

R
]MuN#[U

L
]T[BM ]MQN. (24)

The square matrix [U
L
]T[U

R
] is invertible based on the fact that all of the columns of the

transformation matrix of a linear elastic structure are linearly independent. If one designates
[C]"[[U

L
]T[U

R
]]~1, equation (27) can be written in the form

MuR N"[C][U
L
]T[AM ][U

R
]MuN#[C][U

L
]T[BM ]MQN"[AM ]MuN#[B]MQN, (25)

where [A]"[C][U
L
]T[AM ][U

R
] and [B]"[C][U

L
]T[BM ] are the reduced order coe$cient

matrices. In the case of modal damping (proportional damping) and in the absence of
Coriolis terms, the left and right transformation matrices [U

L
] and [U

R
] respectively are

equal. In this case, the matrix [AM ] can be put in a symmetric form, thus leading to a diagonal
form of [A].

If other external damping mechanisms are part of the structural system, e.g., bearing
damping, suspension damping, etc., then the modal characteristics may be obtained for the
adjoint equation including the damping term. In such a case, one may resort to methods for
modifying the mass matrix in order to account for the damping and/or gyroscopic e!ects
[31], thus, avoiding the need to deal with a complex eigenvalue problem. The results
reported in reference [32] show that, even for systems with gyroscopic and external
damping, the reduced order model using planar modes is of su$ciently high accuracy when
compared to the one obtained by using complex modal reduction. Equation (25) can be
written in the state-space form

MuR N
(2mx1)

"[A]MuN#[B]MQN (26)



ACTIVE MODAL CONTROL OF ROTATING BEAMS 687
and the measurement vector as

MvN
(2lx1)

"[C]MuN, (27)

where m is the number of modes included in the model. The observation matrix
[C]"[[0] [CM ]], where [CM ] represents entries of the observation matrix associated with
displacements. At this stage, one needs to state that observations are carried out by
obtaining response measurements using l sensors located at a speci"ed set of structural
nodal points. The sensor locations are to be properly chosen to satisfy the observability
requirement for the controlled modes [4, 7].

2.5. SIGNIFICANT AND RESIDUAL FREQUENCY SUBSYSTEMS

If the actual plant dynamics is represented by a large number*of deformation modes,
one may wish to control only a subset of signi"cant vibration modes. The rest of the
vibration modes will be considered as a residual or uncontrolled subsystem. Accordingly,
the modal co-ordinate vector MuN can be partitioned as

MuN"[Mu
s
NT, Mu

r
NT]T, (28)

where Mu
s
N and Mu

r
N are the state vectors associated with the signi"cant and the residual

frequency subsystems respectively. The dynamic models of such subsystems are given by

MuR
s
N"[A

s
]Mu

s
N#[B

s
]MQ

s
N, Mv

s
N"[C

s
]Mu

s
N (29)

and

MuR
r
N"[A

r
]Mu

r
N#[B

r
]MQ

r
N, Mv

r
N"[C

r
]Mu

r
N, (30)

where equations (29) and (30) represent the dynamics of the signi"cant and residual
subsystems respectively. It is important to note that the residual interaction terms in
equations (29) and (30) have been ignored, thus being treated as modelling error. The
residual interactions may give rise to control and observation spillover, which may lead to
instability [7]. Stability bounds as well as conditions to guarantee that residual interaction
terms (spillover) do not lead to instability have been addressed early in the literature
[33, 34].

In practice, the signi"cant frequency subsystem refers to the show dynamics of the system,
which normally spans the lower end of the frequency spectrum. Such a low-frequency
subsystem accounts for most of the total kinetic energy of the system, while the residual
dynamics represent only a very small or even negligible portion of the system's total energy.
In practice, the measurements Mv

s
N may be obtained through a set of narrowband-pass

"lters in order to get a clean measurement of the controlled modes without any
contamination from the residual (high-frequency) subsystem. Accordingly, one can avoid
the problem of the destabilization e!ect due to the measurement spillover from residual
modes.

3. THE ACTIVE CONTROLLER

The structure of the active controller employed in this study is simply an output feedback
control action. For the linear structural systems, the deterministic approach of regulating
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a linear system may be invoked. Practical control implementations require that sensors and
actuators be placed at certain accessible structural locations. Moreover, a minimum
number of such control devices is apparently desired. If the output variables as well as
control actions are measured at some speci"ed nodal locations, then the state di!erential
equation of the controlled subsystem can be rewritten as

MuR
s
N"[A

s
]Mu

s
N#[BM

s
]MF

s
N and Mv

s
N"[C

s
]Mu

s
N, (31)

where [BI
s
]"[B

s
][P] and [C

s
]"[[0][CM

s
]]. The matrix [P] is a Boolean matrix that

constructs the vector MF
s
N out of the full-order nodal force vector MQ

s
N. The vector MF

s
N

contains a selected set of non-zero entries that correspond to the actuators' locations. By
examining the rank of controllability and observability matrices, one can simply conclude
that the controllability and observability requirements for the system presented by equation
(31) are satis"ed if and only if each row of [BI

s
] and each column of [CM

s
] have a non-zero

entry. This conclusion is only true if the controlled modes are associated with
unit-multiplicity eigenvalues. It is consequently concluded that the system can be made
controllable and observable by using one sensor and one actuator, provided that they are
located away from the nodes of the controlled modes. Now, one can consider
a state-variable feedback control law of the form

MF
s
N"![G

c
]Mu

s
N, (32)

where [G
c
] is the controller gain matrix.

3.1. ESTIMATION OF THE SYSTEM STATES

The control law of equation (32) may not seem realistic in its present form, simply because
the system states are not directly measurable. Actual direct measurements can only produce
displacements and velocities of the structural points where sensors are attached. In this
regard, a state estimator (observer) can be utilized to estimate the states of the controlled
system [35]. That is, equation (32) is replaced by

MF
s
N"![G

c
]MuL

s
N, (33)

where the control law is interconnected with the estimated state MuL
s
N. Therefore, the

observer is built using the same characteristics ([A
s
], [BI

s
], [C

s
]) of the controlled dynamics.

The observer corrects its internal model by linear feedback of the error between the
measured output Mv

s
N and the estimated output MvL

s
N. This can be written as

MuL Q
s
N"[A

s
]MuL

s
N#[BI

s
]MF

s
N#[G

e
][Mv

s
N!MvL

s
N], (34)

where [G
e
] is the estimator gain matrix, and MvL

s
N"[C

s
]MuL

s
N. For the deterministic case, the

state estimator can be designed as a Luneburger observer. If the system experiences state
excitation noise as well as measurement for observation noise, then an optimal state
estimator can be designed as a Kalman "lter for the stochastic system.

If the error between the measured and estimated states is de"ned by

MeN"Mu
s
N!MuL

s
N, (35)
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then, utilizing equations (31) and (35), one can write the derivative of equation (35) in the
form

Me5 N"([A
s
]![G

e
][C

s
])MeN. (36)

For the linear time-invariant problem, the solution of equation (36) has the property that
the error MeNP0 as tPR. Consequently, the asymptotic stability of the observer is
determined by the behavior of the matrix ([A

s
]![G

e
][C

s
]), whose characteristic values are

the poles of the state estimator. By using pole allocation algorithms, such poles can be
arbitrarily placed deep in the left half of the complex plane in order to achieve observer
stability and the desirable fast convergence of the estimation error to zero [35]. Placing
poles too far to the left-half plane, would result in large gain values [G

e
], thus causing

the observer to become too sensitive to the observation noise. In general, a compromise
can be achieved between the fast convergence and high sensitivity to measurement
noise.

3.2. THE CONTROLLER GAIN MATRIX

The gain matrix [G
c
] of the control law of equation (33) can be determined by

pole-placement algorithms. In fact, the closed-loop poles of the system can be located
anywhere in the left-hand side of the complex plane. The closed-loop poles when placed
very far to the left would result in the desired faster response in converging to the zero state.
Such a fast response normally require large input amplitudes. In actual applications, input
amplitudes must be bounded, where smaller values (i.e., smaller actuators) are always
desired. To achieve this goal, a best compromise may be obtained by "nding an optimal
solution that satis"es certain performance criteria. In this regard, a quadratic integral
criterion can be very useful in representing some physical quantities which are pertinent to
the system's performance characteristics. In the structural vibrations, the objective is to
suppress such vibration by minimizing the kinetic energy content in the excited modes. To
this end, a performance index in terms of energy can be written as

C"P
tf

t0

Mu
s
NT[E]Mu

s
Ndt, (37)

where the quadratic form of the controlled variable Mu
s
N together with a properly chosen

weighting matrix [E] can be considered to represent the kinetic energy in the controlled
modes. However, in order to penalize any excessive amplitudes of the control forces, the
performance criterion of equation (37) can be modi"ed to include the mean square input
coverage as

C"P
tf

t0

[Mu
s
NT[E]Mu

s
N#MF

s
NT[;]MF

s
N] dt, (38)

where both the weighting matrices [E] and [;] are positive-de"nite symmetric matrices.
For the linear structural system represented by equation (13), the weighting matrix [E] is
given by

[E]"
1

2 C
[I]

[0]

[0]

[M]D. (39)



Figure 2. Flowchart of the active control scheme.
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Now, the "rst quadratic term of equation (38) represents the kinetic energy content in the
controlled modes. If the other weighting matrix for the input term is taken as identity matrix
(i.e. [;]"[I]), then the second quadratic term of equation (38) represents the square of the
control forces. Nevertheless, other appropriate values for [;] can be selected.

The controller gain matrix [G
c
] can be determined by solving the steady state optimal

regulator problem. In this case, the gain matrix is given by

[G
c
]"![;]~1[BI

s
]T[P], (40)

where [P] is the solution of the following matrix algebraic equation of the Riccati type:

[A
s
]T[P]#[P][A

s
]![P][BI

s
][;]~1[BI

s
]T[P]#[E]"[0]. (41)

When the system excitations and measurements are contaminated by noise, the stochastic
separation principle can be applied. That is, the control gain matrix [G

c
] is obtained from the

deterministic optimal control law, equation (33), with the performance index, equation (38),
where the true state is replaced by the estimated state from the Kalman "lter. The control
law remains optimal in the sense it minimizes the expected value of the performance index.
One must note that the dynamics of sensors and actuators are not included in the design
of the controller. The #owchart of the complete active control scheme is shown in Figure 2.



TABLE 1

Frequencies of ,xed}free beam

j g"0 g"3

1 3.515 4)6488
2 22)033 23)292
3 61)697 62)976
4 120)905 122)235
5 199)875 201)237
6 298)609 299)993
7 417)137 418)537
8 555)510 556)921
9 713)803 715)223

10 892)129 893)556
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4. NUMERICAL SIMULATION

4.1. NUMERICAL EXAMPLE

An elastic beam of length 1 m which is "xed to a rotating rigid hub is considered. The
beam geometric characteristics are represented by the geometric parameter
(EI/oA¸)1@2"55)2. In this simulation, the beam is discretized by 12 equal "nite beam
elements. The corresponding frequency spectrum up to the 10th mode is displayed in
Table 1, for non-rotating as well as rotating beams. In this case, the natural frequencies of
the rotating beam are those for the in-plane (lead}lag) motion. Both the frequency and the
speed of rotation are presented in the parametric forms; j"u/(EI/oA¸)1@2 and
g"X/(EI/oA¸)1@2. The beam rotates at a constant angular speed of 1600 r.p.m., which is
approximately equivalent to g"3.

The dynamic model of the beam using the "rst six modes is considered as the plant
dynamics. The active controller is implemented to control the dynamics of the "rst four
modes, thus treating the remaining two modes (the "fth and sixth modes) as residual modes,
equations (29) and (30). The active controller is represented by one sensor located at the tip
point (node 13) and one actuator located at node 3, where the "rst four modes are
controllable, as shown in Figure 3. In this con"guration, modes 5 and 6 are subjected to
both observation and control spillover. In order to aid in selecting the number of modes to
be retained as the controlled dynamics, an energy index is introduced. The energy index
kE can be established as the ratio of the time average kinetic energy content SE3 i

h
Tq1 in the

high-frequency subsystem to the time-average kinetic energy content SE3 i
l
Tq1 in the

low-frequency subsystem as

kiE"SE3 i
h
Tq1/SE3 i

l
Tq1"T

l1~1
+
j/1

E3 i
jUNT

l2
+
j/l1

E3 i
jU, (42)

where l
1

is the number of lower modes, l
2

is the total number of modes to be included
in the dynamic model, and q

1
is the time period of the lowest natural frequency. A very

small value of kE implies that the selected set of higher modes can be treated as residual
modes.

Actuators used in rotating beams can be of the self-supporting generator type, like those
developed in reference [4, 36]. Two control schemes are considered. The "rst controller



Figure 3. The active control con"guration.

TABLE 2

¹he avtve controller gain matrices

Scheme 1 Scheme 2

[G
e
]
(8]1)

[G
c
]T
(8]1)

[G
e
]
(8]1)

[G
c
]T
(8]1)

64)78 43)898 62)36 43)735
!448)98 21)918 !509)43 26)824

2008)62 34)080 2001)84 32)126
!8317)52 38)723 !8112)37 36)427

17)26 17)945 21)62 15)371
!14)16 50)089 !16)81 49)963

33)64 27)916 28)91 31)229
!49)37 64)624 !47)22 58)026
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(scheme 1) is designed based on an elastodynamic model of a rotating beam, while the
second controller (scheme 2) is derived for a non-rotating elastic beam. In the second
scheme, the observer model and the optimal control law are based on the following
simpli"ed form of equation (12):

[MMeK N#[K
e
]MeN"MQ

e
N. (43)

In either case, the matrices [BM
s
]
(8]1)

and [CM
s
]
(1]8)

contain only the non-zero entries that are
associated with the "rst four modes, which are evaluated at the corresponding actuator and
sensor locations respectively.

The state estimator, as described by equation (34), is established. For scheme 1 the
estimator has an internal model of the "rst four modes of a rotating elastic beam. The
estimator gain matrix [G

e
]
(8]1)

is computed for the completely observable system
([A

s
], [C

s
]) by using a pole-allocation algorithm, where the error between measurements

and computations is forced to die out at an exponential rate of e~10t. That is, the spectrum
of ([A

s
]![G

e
][C

s
]) lies to the left of a vertical line passing through (!10, 0) on the real

axis of complex plane. The gain values are presented in Table 2.



Figure 4. The undamped tip point response.
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The controller gain [G
c
]
(1]8)

is obtained for the steady state optimal regulator problem
by solving the algebraic matrix equation of the Riccati type, as given by equation (41). The
optimal control law is invoked to minimize the performance index of equation (38). In this
example, the weighting matrix [;] is set equal to 1

2
[I]. The controller gain matrix is

computed and presented in Table 2. Similar computations are performed to obtain observer
and controller gain matrices for scheme 2.

The undamped vibrational response of the tip point of the beam without control, as
represented by the sensor output, is shown in Figure 4, where the elastic degrees of freedom
are represented by the "rst six modal co-ordinates. In Figure 5, the e!ect of material
damping (2% modal damping in all modes) is present. The dynamic response of the tip
point after the application of the active controller (scheme 1) is shown in Figure 6.

The total kinetic energy in the vibrational modes can be expressed in terms of
a normalized energy parameter [37]. The energy parameter R)

j
represents the ratio of the

unweighted energy in the jth damped mode to the unweighted energy of the same
undamped mode. This can be written for the signi"cant (controlled) and the residual mode
subsystems, respectively, as

R)
s
"

(m~k)
+
j/1

(u2
j
u2
j
#uR 2

j
)/u2

j
, R)

r
"

m
+

j/(m~k)

(u2
j
u2
j
#uR 2

j
)/u2

j
, (44, 45)

where m is the total number of modes that represent the dynamics of a plant, and k is the
number of modes in the high-frequency subsystem (residual modes). These are calculated
and presented in Figures 7 and 8. In order to show the e!ect of the small amount of material
damping (2% modal damping) on stabilizing the residual modes, the energy parameter for
the residual modes without material damping is calculated and displayed in Figure 9. The
"gure shows that the active controller tend to destabilize the uncontrolled residual modes.
However, the small amount of the natural material damping is su$cient to stabilize such
modes, as shown in Figure 8.



Figure 5. The tip point response with material damping.

Figure 6. The tip point response with control.
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The other controller (scheme 2) is considered, and the corresponding controller gain
matrix is calculated and presented in Table 2. The simulation results show that the
controller performance has deviated from the optimal behavior of scheme 1, as displayed in
Figure 10. Figures 11 and 12 show comparisons of the estimator errors and the actuator
forces respectively for the two control schemes.



Figure 7. Energy in the controlled modes.

Figure 8. Energy in the residual modes.
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5. CONCLUSION

A theoretical investigation into the application of active vibration control to rotating
beams is presented. The rotating beam is modelled by using the "nite element approach.



Figure 9. Energy in the residual modes without material damping.

Figure 10. The tip point response with control (scheme 2), - - -, reference motion of tip point.
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The problem of vibration suppression in rotating elastic beams is formulated by using active
control techniques. A computational algorithm is established to generate numerically the
"nite element model as well as the calculation of the gain matrices of both the state
estimator and the optimal controller. In practical applications, the plant dynamics, as



Figure 11. The actuator output: *, scheme 1; - - -, scheme 2.

Figure 12. The observer error: *, scheme 1; - - -, scheme 2.
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shown in Figure 2, is replaced by the actual physical structure. The estimator dynamics is
represented by a reduced order modal form of the "nite element mathematical model.
Either analytically calculated or experimentally determined mode shapes can be used as
a basis for the modal transformation. For real-time control, vibration measurements are
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obtained by a set of sensors (e.g., displacement transducers with spectral "lters), and fed to
the controller, which can be programmed on an on-board microprocessor.

It is noteworthy to emphasize the importance of including the e!ect of rotation in the
derivation of the controller equations. The numerical results of the two schemes presented
show that ignoring the e!ect of rotation in controller design may result in inaccurate gain
values that will eventually result in poor performance, and may lead to instability at higher
rates of rotation.

The numerical simulation reveals the potential of the numerical scheme developed
in analysis and design of such control systems, by considering di!erent controller
arrangements. The e!ect of material damping on the stability of the residual modes can also
be easily addressed.
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